Super Kid
Published © GPL3+

Windows Remote Arduino (Windows Remote Arduino Experience)

Break your heart - The Windows Remote Arduino Experience allows you to blinking LEDs on the Arduino

BeginnerProtip8,424
Windows Remote Arduino (Windows Remote Arduino Experience)

Things used in this project

Hardware components

Jumper wires (generic)
Jumper wires (generic)
×1
Microsoft Windows 10 PC
×1
SparkFun Bluetooth Modem - BlueSMiRF Silver
SparkFun Bluetooth Modem - BlueSMiRF Silver
×1
Arduino UNO
Arduino UNO
You can use any type of Arduino. But in this sample we will use Arduino UNO
×1
Breadboard (generic)
Breadboard (generic)
×1
LED (generic)
LED (generic)
×1
Resistor
×2
Arduino WiFi shield
Arduino WiFi shield
For Network, use the Wi-Fi shield
×1

Software apps and online services

Arduino IDE
Arduino IDE
Microsoft Windows Remote Arduino Experience

Story

Read more

Schematics

Wiring Diagram

Code

Arduino WiFi shield app

Arduino
/*
 * Firmata is a generic protocol for communicating with microcontrollers
 * from software on a host computer. It is intended to work with
 * any host computer software package.
 *
 * To download a host software package, please clink on the following link
 * to open the download page in your default browser.
 *
 * http://firmata.org/wiki/Download
 */

/*
  Copyright (C) 2006-2008 Hans-Christoph Steiner.  All rights reserved.
  Copyright (C) 2010-2011 Paul Stoffregen.  All rights reserved.
  Copyright (C) 2009 Shigeru Kobayashi.  All rights reserved.
  Copyright (C) 2009-2011 Jeff Hoefs.  All rights reserved.

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  See file LICENSE.txt for further informations on licensing terms.

  formatted using the GNU C formatting and indenting
*/

#include <Servo.h>
#include <Wire.h>
#include <Firmata.h>
#include <SPI.h>
#include <WiFi.h>
#include "WiFiStream.h"

// move the following defines to Firmata.h?
#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000

#define MAX_QUERIES 8
#define MINIMUM_SAMPLING_INTERVAL 10

#define REGISTER_NOT_SPECIFIED -1

/*==============================================================================
 * WiFi Settings
 *============================================================================*/
 
/* 
 * NOTE: The WiFi library is designed for the Arduino WiFi shield.
 * This shield uses pins 7, 9, 10, 11, 12, and 13 (also pin 4 when using the SD card).
 * you MUST NOT manipulate these pins when using this sketch
 */
 
//replace this with your wireless network SSID
char ssid[] = "my_network";

/*
 * if you do not want to use a static IP (v4) address, comment the line below. You can also change the IP.
 * if this line is commented out, the WiFi shield will attempt to get an IP from the DHCP server
 */
#define STATIC_IP_ADDRESS 192,168,2,100

//define your port number here, you will need this to open a TCP connection to your Arduino
#define PORT 5000;

/*
 * uncomment all three of the below if using WEP security.
 *   - Here, the value of wep_index must be 0, 1, 2 or 3.
 *   - Keys must be either 5 or 13 bytes long (10 or 26 hex characters) depending on the key type.
 */
//#define USING_WEP 1
//byte wep_index = 0
//char wep_key[] = "CAFEBABE01";

/*
 * uncomment both of the below if using WPA security.
 * The value of the WPA define does not matter
 */
//#define USING_WPA 1
//char wpa_passphrase[] = "my_secret_passphrase";


/*==============================================================================
 * GLOBAL VARIABLES
 *============================================================================*/
 
/* wifi-related variables */
WiFiStream wifiStream;

#ifdef STATIC_IP_ADDRESS
  IPAddress ip(STATIC_IP_ADDRESS);
#endif

int port = PORT;

/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting

/* digital input ports */
byte reportPINs[TOTAL_PORTS];       // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS];     // previous 8 bits sent

/* pins configuration */
byte pinConfig[TOTAL_PINS];         // configuration of every pin
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
int pinState[TOTAL_PINS];           // any value that has been written

/* timer variables */
unsigned long currentMillis;        // store the current value from millis()
unsigned long previousMillis;       // for comparison with currentMillis
int samplingInterval = 19;          // how often to run the main loop (in ms)

/* i2c data */
struct i2c_device_info {
  byte addr;
  byte reg;
  byte bytes;
};

/* for i2c read continuous more */
i2c_device_info query[MAX_QUERIES];

byte i2cRxData[32];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
unsigned int i2cReadDelayTime = 0;  // default delay time between i2c read request and Wire.requestFrom()

Servo servos[MAX_SERVOS];
/*==============================================================================
 * FUNCTIONS
 *============================================================================*/

void readAndReportData(byte address, int theRegister, byte numBytes) {
  // allow I2C requests that don't require a register read
  // for example, some devices using an interrupt pin to signify new data available
  // do not always require the register read so upon interrupt you call Wire.requestFrom()
  if (theRegister != REGISTER_NOT_SPECIFIED) {
    Wire.beginTransmission(address);
#if ARDUINO >= 100
    Wire.write((byte)theRegister);
#else
    Wire.send((byte)theRegister);
#endif
    Wire.endTransmission();
    // do not set a value of 0
    if (i2cReadDelayTime > 0) {
      // delay is necessary for some devices such as WiiNunchuck
      delayMicroseconds(i2cReadDelayTime);
    }
  } else {
    theRegister = 0;  // fill the register with a dummy value
  }

  Wire.requestFrom(address, numBytes);  // all bytes are returned in requestFrom

  // check to be sure correct number of bytes were returned by slave
  if (numBytes == Wire.available()) {
    i2cRxData[0] = address;
    i2cRxData[1] = theRegister;
    for (int i = 0; i < numBytes; i++) {
#if ARDUINO >= 100
      i2cRxData[2 + i] = Wire.read();
#else
      i2cRxData[2 + i] = Wire.receive();
#endif
    }
  }
  else {
    if (numBytes > Wire.available()) {
      Firmata.sendString("I2C Read Error: Too many bytes received");
    } else {
      Firmata.sendString("I2C Read Error: Too few bytes received");
    }
  }

  // send slave address, register and received bytes
  Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}

void outputPort(byte portNumber, byte portValue, byte forceSend)
{
  // pins not configured as INPUT are cleared to zeros
  portValue = portValue & portConfigInputs[portNumber];
  // only send if the value is different than previously sent
  if (forceSend || previousPINs[portNumber] != portValue) {
    Firmata.sendDigitalPort(portNumber, portValue);
    previousPINs[portNumber] = portValue;
  }
}

/* -----------------------------------------------------------------------------
 * check all the active digital inputs for change of state, then add any events
 * to the Serial output queue using Serial.print() */
void checkDigitalInputs(void)
{
  /* Using non-looping code allows constants to be given to readPort().
   * The compiler will apply substantial optimizations if the inputs
   * to readPort() are compile-time constants. */
  if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
  if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
  if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
  if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
  if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
  if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
  if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
  if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
  if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
  if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
  if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
  if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
  if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
  if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
  if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
  if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}

// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
 * two bit-arrays that track Digital I/O and PWM status
 */
void setPinModeCallback(byte pin, int mode)
{
  if (pinConfig[pin] == I2C && isI2CEnabled && mode != I2C) {
    // disable i2c so pins can be used for other functions
    // the following if statements should reconfigure the pins properly
    disableI2CPins();
  }
  if (IS_PIN_SERVO(pin) && mode != SERVO && servos[PIN_TO_SERVO(pin)].attached()) {
    servos[PIN_TO_SERVO(pin)].detach();
  }
  if (IS_PIN_ANALOG(pin)) {
    reportAnalogCallback(PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
  }
  if (IS_PIN_DIGITAL(pin)) {
    if (mode == INPUT) {
      portConfigInputs[pin / 8] |= (1 << (pin & 7));
    } else {
      portConfigInputs[pin / 8] &= ~(1 << (pin & 7));
    }
  }
  pinState[pin] = 0;
  switch (mode) {
    case ANALOG:
      if (IS_PIN_ANALOG(pin)) {
        if (IS_PIN_DIGITAL(pin)) {
          pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
          digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
        }
        pinConfig[pin] = ANALOG;
      }
      break;
    case INPUT:
      if (IS_PIN_DIGITAL(pin)) {
        pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
        digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
        pinConfig[pin] = INPUT;
      }
      break;
    case OUTPUT:
      if (IS_PIN_DIGITAL(pin)) {
        digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable PWM
        pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
        pinConfig[pin] = OUTPUT;
      }
      break;
    case PWM:
      if (IS_PIN_PWM(pin)) {
        pinMode(PIN_TO_PWM(pin), OUTPUT);
        analogWrite(PIN_TO_PWM(pin), 0);
        pinConfig[pin] = PWM;
      }
      break;
    case SERVO:
      if (IS_PIN_SERVO(pin)) {
        pinConfig[pin] = SERVO;
        if (!servos[PIN_TO_SERVO(pin)].attached()) {
          servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin));
        }
      }
      break;
    case I2C:
      if (IS_PIN_I2C(pin)) {
        // mark the pin as i2c
        // the user must call I2C_CONFIG to enable I2C for a device
        pinConfig[pin] = I2C;
      }
      break;
    default:
      Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
  }
  // TODO: save status to EEPROM here, if changed
}

void analogWriteCallback(byte pin, int value)
{
  if (pin < TOTAL_PINS) {
    switch (pinConfig[pin]) {
      case SERVO:
        if (IS_PIN_SERVO(pin))
          servos[PIN_TO_SERVO(pin)].write(value);
        pinState[pin] = value;
        break;
      case PWM:
        if (IS_PIN_PWM(pin))
          analogWrite(PIN_TO_PWM(pin), value);
        pinState[pin] = value;
        break;
    }
  }
}

void digitalWriteCallback(byte port, int value)
{
  byte pin, lastPin, mask = 1, pinWriteMask = 0;

  if (port < TOTAL_PORTS) {
    // create a mask of the pins on this port that are writable.
    lastPin = port * 8 + 8;
    if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
    for (pin = port * 8; pin < lastPin; pin++) {
      // do not disturb non-digital pins (eg, Rx & Tx)
      if (IS_PIN_DIGITAL(pin)) {
        // only write to OUTPUT and INPUT (enables pullup)
        // do not touch pins in PWM, ANALOG, SERVO or other modes
        if (pinConfig[pin] == OUTPUT || pinConfig[pin] == INPUT) {
          pinWriteMask |= mask;
          pinState[pin] = ((byte)value & mask) ? 1 : 0;
        }
      }
      mask = mask << 1;
    }
    writePort(port, (byte)value, pinWriteMask);
  }
}


// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
 */
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
  if (analogPin < TOTAL_ANALOG_PINS) {
    if (value == 0) {
      analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
    } else {
      analogInputsToReport = analogInputsToReport | (1 << analogPin);
    }
  }
  // TODO: save status to EEPROM here, if changed
}

void reportDigitalCallback(byte port, int value)
{
  if (port < TOTAL_PORTS) {
    reportPINs[port] = (byte)value;
  }
  // do not disable analog reporting on these 8 pins, to allow some
  // pins used for digital, others analog.  Instead, allow both types
  // of reporting to be enabled, but check if the pin is configured
  // as analog when sampling the analog inputs.  Likewise, while
  // scanning digital pins, portConfigInputs will mask off values from any
  // pins configured as analog
}

/*==============================================================================
 * SYSEX-BASED commands
 *============================================================================*/

void sysexCallback(byte command, byte argc, byte *argv)
{
  byte mode;
  byte slaveAddress;
  byte slaveRegister;
  byte data;
  unsigned int delayTime;

  switch (command) {
    case I2C_REQUEST:
      mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
      if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
        Firmata.sendString("10-bit addressing mode is not yet supported");
        return;
      }
      else {
        slaveAddress = argv[0];
      }

      switch (mode) {
        case I2C_WRITE:
          Wire.beginTransmission(slaveAddress);
          for (byte i = 2; i < argc; i += 2) {
            data = argv[i] + (argv[i + 1] << 7);
#if ARDUINO >= 100
            Wire.write(data);
#else
            Wire.send(data);
#endif
          }
          Wire.endTransmission();
          delayMicroseconds(70);
          break;
        case I2C_READ:
          if (argc == 6) {
            // a slave register is specified
            slaveRegister = argv[2] + (argv[3] << 7);
            data = argv[4] + (argv[5] << 7);  // bytes to read
            readAndReportData(slaveAddress, (int)slaveRegister, data);
          }
          else {
            // a slave register is NOT specified
            data = argv[2] + (argv[3] << 7);  // bytes to read
            readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
          }
          break;
        case I2C_READ_CONTINUOUSLY:
          if ((queryIndex + 1) >= MAX_QUERIES) {
            // too many queries, just ignore
            Firmata.sendString("too many queries");
            break;
          }
          queryIndex++;
          query[queryIndex].addr = slaveAddress;
          query[queryIndex].reg = argv[2] + (argv[3] << 7);
          query[queryIndex].bytes = argv[4] + (argv[5] << 7);
          break;
        case I2C_STOP_READING:
          byte queryIndexToSkip;
          // if read continuous mode is enabled for only 1 i2c device, disable
          // read continuous reporting for that device
          if (queryIndex <= 0) {
            queryIndex = -1;
          } else {
            // if read continuous mode is enabled for multiple devices,
            // determine which device to stop reading and remove it's data from
            // the array, shifiting other array data to fill the space
            for (byte i = 0; i < queryIndex + 1; i++) {
              if (query[i].addr = slaveAddress) {
                queryIndexToSkip = i;
                break;
              }
            }

            for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) {
              if (i < MAX_QUERIES) {
                query[i].addr = query[i + 1].addr;
                query[i].reg = query[i + 1].addr;
                query[i].bytes = query[i + 1].bytes;
              }
            }
            queryIndex--;
          }
          break;
        default:
          break;
      }
      break;
    case I2C_CONFIG:
      delayTime = (argv[0] + (argv[1] << 7));

      if (delayTime > 0) {
        i2cReadDelayTime = delayTime;
      }

      if (!isI2CEnabled) {
        enableI2CPins();
      }

      break;
    case SERVO_CONFIG:
      if (argc > 4) {
        // these vars are here for clarity, they'll optimized away by the compiler
        byte pin = argv[0];
        int minPulse = argv[1] + (argv[2] << 7);
        int maxPulse = argv[3] + (argv[4] << 7);

        if (IS_PIN_SERVO(pin)) {
          if (servos[PIN_TO_SERVO(pin)].attached())
            servos[PIN_TO_SERVO(pin)].detach();
          servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
          setPinModeCallback(pin, SERVO);
        }
      }
      break;
    case SAMPLING_INTERVAL:
      if (argc > 1) {
        samplingInterval = argv[0] + (argv[1] << 7);
        if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
          samplingInterval = MINIMUM_SAMPLING_INTERVAL;
        }
      } else {
        //Firmata.sendString("Not enough data");
      }
      break;
    case EXTENDED_ANALOG:
      if (argc > 1) {
        int val = argv[1];
        if (argc > 2) val |= (argv[2] << 7);
        if (argc > 3) val |= (argv[3] << 14);
        analogWriteCallback(argv[0], val);
      }
      break;
    case CAPABILITY_QUERY:
      Firmata.write(START_SYSEX);
      Firmata.write(CAPABILITY_RESPONSE);
      for (byte pin = 0; pin < TOTAL_PINS; pin++) {
        if (IS_PIN_DIGITAL(pin)) {
          Firmata.write((byte)INPUT);
          Firmata.write(1);
          Firmata.write((byte)OUTPUT);
          Firmata.write(1);
        }
        if (IS_PIN_ANALOG(pin)) {
          Firmata.write(ANALOG);
          Firmata.write(10);
        }
        if (IS_PIN_PWM(pin)) {
          Firmata.write(PWM);
          Firmata.write(8);
        }
        if (IS_PIN_SERVO(pin)) {
          Firmata.write(SERVO);
          Firmata.write(14);
        }
        if (IS_PIN_I2C(pin)) {
          Firmata.write(I2C);
          Firmata.write(1);  // to do: determine appropriate value
        }
        Firmata.write(127);
      }
      Firmata.write(END_SYSEX);
      break;
    case PIN_STATE_QUERY:
      if (argc > 0) {
        byte pin = argv[0];
        Firmata.write(START_SYSEX);
        Firmata.write(PIN_STATE_RESPONSE);
        Firmata.write(pin);
        if (pin < TOTAL_PINS) {
          Firmata.write((byte)pinConfig[pin]);
          Firmata.write((byte)pinState[pin] & 0x7F);
          if (pinState[pin] & 0xFF80) Firmata.write((byte)(pinState[pin] >> 7) & 0x7F);
          if (pinState[pin] & 0xC000) Firmata.write((byte)(pinState[pin] >> 14) & 0x7F);
        }
        Firmata.write(END_SYSEX);
      }
      break;
    case ANALOG_MAPPING_QUERY:
      Firmata.write(START_SYSEX);
      Firmata.write(ANALOG_MAPPING_RESPONSE);
      for (byte pin = 0; pin < TOTAL_PINS; pin++) {
        Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
      }
      Firmata.write(END_SYSEX);
      break;
  }
}

void enableI2CPins()
{
  byte i;
  // is there a faster way to do this? would probaby require importing
  // Arduino.h to get SCL and SDA pins
  for (i = 0; i < TOTAL_PINS; i++) {
    if (IS_PIN_I2C(i)) {
      // mark pins as i2c so they are ignore in non i2c data requests
      setPinModeCallback(i, I2C);
    }
  }

  isI2CEnabled = true;

  // is there enough time before the first I2C request to call this here?
  Wire.begin();
}

/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
  isI2CEnabled = false;
  // disable read continuous mode for all devices
  queryIndex = -1;
  // uncomment the following if or when the end() method is added to Wire library
  // Wire.end();
}

/*==============================================================================
 * SETUP()
 *============================================================================*/

void systemResetCallback()
{
  // initialize a defalt state
  // TODO: option to load config from EEPROM instead of default
  if (isI2CEnabled) {
    disableI2CPins();
  }
  for (byte i = 0; i < TOTAL_PORTS; i++) {
    reportPINs[i] = false;      // by default, reporting off
    portConfigInputs[i] = 0;	// until activated
    previousPINs[i] = 0;
  }
  // pins with analog capability default to analog input
  // otherwise, pins default to digital output
  for (byte i = 0; i < TOTAL_PINS; i++) {
    if (IS_PIN_ANALOG(i)) {
      // turns off pullup, configures everything
      setPinModeCallback(i, ANALOG);
    } else {
      
      //this line is absolutely essential for WiFi as pin 7 is used for the handshaking pin
      //for the WiFi shield and is set to INPUT and HIGH by the WiFi library.
      if( i != 7 )
        // sets the output to 0, configures portConfigInputs
        setPinModeCallback(i, OUTPUT);
        
    }
  }
  // by default, do not report any analog inputs
  analogInputsToReport = 0;

  /* send digital inputs to set the initial state on the host computer,
   * since once in the loop(), this firmware will only send on change */
  /*
  TODO: this can never execute, since no pins default to digital input
        but it will be needed when/if we support EEPROM stored config
  for (byte i=0; i < TOTAL_PORTS; i++) {
    outputPort(i, readPort(i, portConfigInputs[i]), true);
  }
  */
}

void setup()
{
  Serial.begin( 9600 );
  while( !Serial );
  Serial.println("setup()");
  
  Serial.print("Attempting to connect to network: ");
  Serial.println(ssid);
  
  //determine if static IP is being used.
  #ifdef STATIC_IP_ADDRESS
    Serial.println("Using static IP ...");
    //you can also provide a static IP in the begin() functions, but this simplifies
    //ifdef logic in this sketch due to support for all different encryption types.
    wifiStream.config( ip );
  #else
    Serial.println("IP will be requested from DHCP ..."); 
  #endif
  
  
  #ifdef USING_WEP
    //using WEP encryption
    Serial.println("Using WEP Encyption ...");
    wifiStream.begin( ssid, wep_index, wep_key, port );
    
  #else
  
    #ifdef USING_WPA
      Serial.println("Using WPA Encyption ...");
      wifiStream.begin( ssid, wpa_passphrase, port );
      
    #else //OPEN network
      Serial.println("Connecting to an open network ...");
      wifiStream.begin( ssid, port );
      
    #endif //END USING_WPA
  #endif //END USING_WEP
  
  Serial.println("wifi setup done"); 
  
  Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);

  Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
  Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
  Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
  Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
  Firmata.attach(SET_PIN_MODE, setPinModeCallback);
  Firmata.attach(START_SYSEX, sysexCallback);
  Firmata.attach(SYSTEM_RESET, systemResetCallback);

  Firmata.begin( wifiStream );
  Serial.println("firmata setup done");   
  
  systemResetCallback();  // reset to default config
  
  printWifiStatus();
}


void printWifiStatus() {
  // print the SSID of the network you're attached to:
  Serial.print("SSID: ");
  Serial.println(WiFi.SSID());

  // print your WiFi shield's IP address:
  IPAddress ip = WiFi.localIP();
  Serial.print("IP Address: ");
  Serial.println(ip);

  // print the received signal strength:
  long rssi = WiFi.RSSI();
  Serial.print("signal strength (RSSI):");
  Serial.print(rssi);
  Serial.println(" dBm");
}

/*==============================================================================
 * LOOP()
 *============================================================================*/
void loop()
{
  byte pin, analogPin;

  /* DIGITALREAD - as fast as possible, check for changes and output them to the
   * FTDI buffer using Serial.print()  */
  checkDigitalInputs();

  /* SERIALREAD - processing incoming messagse as soon as possible, while still
   * checking digital inputs.  */
  while (Firmata.available())
    Firmata.processInput();

  /* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
   * 60 bytes. use a timer to sending an event character every 4 ms to
   * trigger the buffer to dump. */

  currentMillis = millis();
  if (currentMillis - previousMillis > samplingInterval) {
    previousMillis += samplingInterval;
    /* ANALOGREAD - do all analogReads() at the configured sampling interval */
    for (pin = 0; pin < TOTAL_PINS; pin++) {
      if (IS_PIN_ANALOG(pin) && pinConfig[pin] == ANALOG) {
        analogPin = PIN_TO_ANALOG(pin);
        if (analogInputsToReport & (1 << analogPin)) {
          Firmata.sendAnalog(analogPin, analogRead(analogPin));
        }
      }
    }
    // report i2c data for all device with read continuous mode enabled
    if (queryIndex > -1) {
      for (byte i = 0; i < queryIndex + 1; i++) {
        readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
      }
    }
  }
}

Windows Remote Arduino Experience App code

Credits

Super Kid

Super Kid

1 project • 26 followers
I am building the project with IoT with Windows (Windows On Devices). Also I have a tag: Break your heart for the beginner.

Comments